Lyubeznik numbers of almost complete intersection and linked ideals
نویسندگان
چکیده
منابع مشابه
Lyubeznik Numbers of Monomial Ideals
Let R = k[x1, ..., xn] be the polynomial ring in n independent variables, where k is a field. In this work we will study Bass numbers of local cohomology modules H I (R) supported on a squarefree monomial ideal I ⊆ R. Among them we are mainly interested in Lyubeznik numbers. We build a dictionary between the modules H I (R) and the minimal free resolution of the Alexander dual ideal I∨ that all...
متن کاملRing graphs and complete intersection toric ideals
We study the family of graphs whose number of primitive cycles equals its cycle rank. It is shown that this family is precisely the family of ring graphs. Then we study the complete intersection property of toric ideals of bipartite graphs and oriented graphs. An interesting application is that complete intersection toric ideals of bipartite graphs correspond to ring graphs and that these ideal...
متن کاملLocally Complete Intersection Stanley–reisner Ideals
In this paper, we prove that the Stanley–Reisner ideal of any connected simplicial complex of dimension ≥ 2 that is locally complete intersection is a complete intersection ideal. As an application, we show that the Stanley–Reisner ideal whose powers are Buchsbaum is a complete intersection ideal.
متن کاملLyubeznik Numbers of Local Rings and Linear Strands of Graded Ideals
In this work we introduce a new set of invariants associated to the linear strands of a minimal free resolution of a Z-graded ideal I ⊆ R = k[x1, . . . , xn]. We also prove that these invariants satisfy some properties analogous to those of Lyubeznik numbers of local rings. In particular, they satisfy a consecutiveness property that we prove rst for Lyubeznik numbers. For the case of squarefree...
متن کاملLocal Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals
Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 2022
ISSN: ['0018-2079']
DOI: https://doi.org/10.32917/h2021027